jueves, 2 de septiembre de 2010

BIBLIOGRAFIA

8. BIBLIOGRAFIA:




Buscadores web:

www.altavista.com

www.google.com

www.copernic.com

español.yahoo

Sitios de internet:

www.aiinsti.com.es/int_art/044s.htlm

robotica.pagina.nl

robotica.uv.es (Instituto de Robotica)

Relación real/irreal-VIRTUALIDAD

Virtualidad


La virtualidad establece una nueva forma de relación entre el uso de las coordenadas de espacio y de tiempo, supera las barreras espaciotemporales y configura un entorno en el que la información y la comunicación se nos muestran accesibles desde perspectivas hasta ahora desconocidas al menos en cuanto a su volumen y posibilidades. La realidad virtual permite la generación de entornos de interacción que separen la necesidad de compartir el espacio-tiempo, facilitando en este caso nuevos contextos de intercambio y comunicación.

Autores como Lévy, han señalado la existencia de diferentes niveles de virtualidad en su relación con la dimensión bidimensional/tridimensional y su relación con la realidad. Yendo desde un continuo que comienza con una menor virtualidad de aquellos aspectos que nos alejan de la realidad o que categorizamos a priori como claramente imaginarios o ilusorios, aumentando con lo bidimensional, hasta las posibilidades que ofrece la tridimensionalidad en su relación de semejanza o analogía con lo real.

Relación real/irreal

La realidad virtual ha eliminado la frontera existente entre realidad e irrealidad. No se trata en este caso de la imposibilidad de separación entre lo real y aquello que no lo es, sino la difusión de los límites que los separan. La amplia variedad de posibilidades que ésta ofrece, ha facilitado el establecimiento de un estatus de realidad, sustentado fundamentalmente en tres aspectos:

• La realidad virtual es compartida con otras personas. Se centra generalmente en la interacción interpersonal, que a pesar de no producirse en el mismo espacio-tiempo, si es percibida como un acto colectivo.

• Tiene una estrecha relación con el mundo físico dada su interrelación e influencia mutua. La experiencia en la realidad virtual viene mediada por la experiencia en el mundo real y ésta es influida por lo que allí es experimentado.

• Está interconectada con la producción artística, ya que se convierte en un espacio más de creación con motivaciones estéticas.

La generación de nuevas oportunidades en entornos diversos ha facilitado la existencia de posibilidades emergentes para la reconstrucción de la propia identidad. Los entornos virtuales, y más concretamente la realidad virtual, han generado un espacio de moratoria para la construcción de la identidad sustentada en la creación de más de un yo. La existencia de estas identidades múltiples favorece la experimentación, pudiendo adoptar, potenciar o desestimar aspectos puestos en práctica en estos entornos, en la propia cotidianidad. Se trataría pues de un espacio de interrelación entre los espacios cotidianos y la realidad virtual, en que las propias experiencias en estos entornos producen una mutua influencia, generando una ruptura de las fronteras entre ambos.

Inmersión y navegación

La realidad virtual puede ser de dos tipos: inmersiva y no inmersiva. Los métodos inmersivos de realidad virtual con frecuencia se ligan a un ambiente tridimensional creado por un ordenador, el cual se manipula a través de cascos, guantes u otros dispositivos que capturan la posición y rotación de diferentes partes del cuerpo humano. La realidad virtual no inmersiva también utiliza el ordenador y se vale de medios como el que actualmente nos ofrece Internet, en el cual podemos interactuar en tiempo real con diferentes personas en espacios y ambientes que en realidad no existen sin la necesidad de dispositivos adicionales al ordenador. Nos acercamos en este caso a la navegación, a través de la cual ofrecemos al sujeto la posibilidad de experimentar (moverse, desplazarse, sentir) determinados espacios, mundos, lugares, como si se encontrase en ellos.

La realidad virtual no inmersiva ofrece un nuevo mundo a través de una ventana de escritorio. Este enfoque no inmersivo tiene varias ventajas sobre el enfoque inmersivo como son el bajo coste y fácil y rápida aceptación de los usuarios. Los dispositivos inmersivos son de alto coste y generalmente el usuario prefiere manipular el ambiente virtual por medio de dispositivos familiares como son el teclado y el ratón que por medio de cascos pesados o guantes.

El alto precio de los dispositivos inmersivos ha generalizado el uso de ambientes virtuales fáciles de manipular por medio de dispositivos más sencillos, como es el ejemplo del importante negocio de las videoconsolas o los juegos en los que numerosos usuarios interactúan a través de Internet. Es a través de Internet como nace VRML, que es un estándar para la creación de estos mundos virtuales no inmersivos, que provee un conjunto de primitivas para el modelaje tridimensional y permite dar comportamiento a los objetos y asignar diferentes animaciones que pueden ser activadas por los usuarios.

Por último hay que destacar algunas mejoras que facilitan los sistemas de realidad virtual, en lo que se refiere al tratamiento de enfermedades relativas a problemas de movilidad.

INMERSION TRIDIMENSIONAL



7. INMERSION TRIDIMENSIONAL:








Es un sistema tecnológico, basado en el empleo de ordenadores y otros dispositivos, cuyo fin es producir una apariencia de realidad que permita al usuario tener la sensación de estar presente en ella. Se consigue mediante la generación por ordenador de un conjunto de imágenes que son contempladas por el usuario a través de un casco provisto de un visor especial. Algunos equipos se completan con trajes y guantes equipados con sensores diseñados para simular la percepción de diferentes estímulos, que intensifican la sensación de realidad. Su aplicación, aunque centrada inicialmente en el terreno de los videojuegos, se ha extendido a otros muchos campos, como la medicina o las simulaciones de vuelo.

IMPLANTES CEREBRALES:

6. IMPLANTES CEREBRALES:




Aunque parezca cada vez más irreal, la ciencia está teniendo avances importantes en cuanto a implantes cerebrales en pacientes. En este caso, un hombre que sufre una parálisis completa de sus músculos voluntarios (síndrome de locked-in) ahora puede utilizar un sintetizador de voz para formar vocales con solo pensarlas.



En un principio, Frank Guenther, de la Universidad de Boston en Massachusetts y su equipo, tuvieron que determinar si el cerebro del paciente podía producir las mismas señales de habla que un ser humano saludable. Le hicieron un estudio de resonancia magnética mientras intentaba formular vocales y los resultados fueron muy positivos. Luego pasaron a implantarle el electrodo, diseñado por Philip Kennedy, en las zonas del cerebro que producen el habla.

A diferencia de otros implantes, que están fijados en el cráneo en vez de una parte especifica del cerebro, este está impregnado con factores neurotróficos, que hace que las neuronas crezcan alrededor del electrodo evitando que se mueva y permitiendo que tenga mejor recepción.



Partes del cerebro humano.

Una vez implantado, el equipo utilizó un ordenador que Guenther desarrolló durante 15 años para decodificar las señales enviadas por el implante para luego descifrar qué estaba intentado decir el paciente. Hasta ahora ha podido producir tres vocales con mucha precisión, pero el objetivo de aquí a cinco años es que pueda utilizar la interfaz sin ningún intermediario.

La diferencia principal con este y el resto de los implantes que se han visto, es que aquellos reciben señales del cerebro para mover prótesis, pero este es el primer implante que se encarga de mejorar el habla en los pacientes.



El próximo paso es mejorar el sistema para que reconozca las consonantes para que el paciente pueda formar palabras completas y hasta frases. No cabe duda de que este es un gran avance para la ciencia y también para la medicina

CONCLUSION

5. CONCLUSION:




Por medio del trabajo que acabamos de presentar, puedo concluir que la robótica y la inteligencia artificial van tomadas de la mano ya que la una se encarga de la parte mecánica, y la otra de la parte analítica.

La robótica es el diseño, fabricación y utilización de máquinas automáticas programables con el fin de realizar tareas repetitivas como el ensamble de automóviles, aparatos, etc. y otras actividades, por ello pienso que la robótica es la parte mecánica de una tecnología, en cambio creo que la inteligencia artificial es la parte analítica o la parte que determina la acción de los robots, ya que los robots no podrían realizar ninguna tarea sin que se les indicara u ordenara la tarea, por ello, aquí es donde entra la inteligencia artificial.

Gracias a la inteligencia artificial se ha logrado que una maquina sea capaz de desarrollar áreas de conocimiento muy especificas y complicadas, haciendo que la maquina pueda simular procesos que el hombre realiza. Pero cabe destacar que aún no se ha logrado que una máquina piense como un humano, pienso que una limitación es el hecho de que el hombre es irremplazable ya que el ser humano cuenta con una característica propia el cual es el sentido común.

Pero no podemos olvidar que el desarrollo de estas tecnologías no pretenden reemplazar al ser humano sino que tratan de mejorar el estilo de vida del ser humano, ya que recordemos que, por lo menos los robots hacen que el trabajo pesado sea mas facil de realizar, y que una maquina no se enferma, ni protestas, ni se cansa y esto puede elevar su utilidad. En fin esperemos que estas tecnologías no se nos vaya de las manos, y que no nos perjudique, sino que nos ayude.


TAREAS FORMALES TECNOLOGICOS

Tareas formales:


• Juegos

• Ajedrez

• Backgammon

• Damas

• Go

• Matemáticas

• Geometría

• Lógica

• Cálculo Integral

• Demostración de las propiedades de los programas

Tareas de los expertos:

• Ingeniería

• Diseño

• Detección de fallos

• Planificación de manufacturación

• Análisis científico

• Diagnosis médica

• Análisis financiero

La evolución de la I.A. se debe al desarrollo de programas para ordenadores capaces de traducir de un idioma a otro, juegos de ajedrez, resolución de teoremas matemáticos, etc. Alrededor de 1950, Alan Turing desarrolló un método para saber si una máquina era o no "inteligente" denominado "Test de Turing", "en el cual un operador tiene que mantener una conversación en dos sentidos con otra entidad, a través de un teclado, e intentar que la otra parte le diga si se trata de una máquina o de otro ser humano.

Sobre este test circulan muchas historias ficticias, pero nuestra favorita es la que trata sobre una persona que buscaba trabajo y al que se le deja delante de un teclado para que se desenvuelva solo. Naturalmente, se da cuenta de la importancia de este test para sus perspectivas de carrera y por lo tanto lucha valientemente para encontrar el secreto, aparentemente sin éxito.

Pero de que sirve crear algoritmos capaces de imitar la inteligencia y el razonamiento humano; es aquí donde la I. A. y la Robótica tienen un punto en común.

La I.A. tiene aplicación en la Robótica cuando se requiere que un robot "piense" y tome una decisión entre dos o mas opciones, es entonces cuando principalmente ambas ciencias comparten algo en común. La I.A. también se aplica a los ordenadores, ya sean PC’s , servidores de red o terminales de red, ya que su principal aplicación es desarrollar programas computacionales que resuelvan problemas que implican la interacción entre la máquina y el hombre, es decir, las máquinas "aprenderán" de los hombres, para realizar mejor su labor.

Técnica de Inteligencia Artificial:

Uno de los más rápidos y sólidos resultados que surgieron en las tres primeras décadas de las investigaciones de la IA fue que la Inteligencia necesita conocimiento.

Para compensar este logro imprescindiblemente el conocimiento poseé algunas propiedades poco deseables como:

• Es voluminoso

• Es difícil caracterizarlo con exactitud

• Cambia constantemente

• Se distingue de los datos en que se organiza de tal forma que se corresponde con la forma en que va a ser usado.

Con los puntos anteriores se concluye que una técnica de IA es un método que utiliza conocimiento representado de tal forma que:

• El conocimiento represente las generalizaciones En otras palabras no es necesario representar de forma separada cada situación individual. En lugar de esto se agrupan las situaciones que comparten propiedades importantes. Si el conocimiento no posee esta propiedad, puede necesitarse demasiada memoria.

Si no se cumple esta propiedad es mejor hablar de "datos" que de conocimiento.

• Debe ser comprendido por las personas que lo proporcionan. Aunque en muchos programas, los datos pueden adquirirse automáticamente (por ejemplo, mediante lectura de instrumentos), en muchos dominios de la IA, la mayor parte del conocimiento que se suministra a los programas lo proporcionan personas haciéndolo siempre en términos que ellos comprenden.

• Puede modificarse fácilmente para corregir errores y reflejar los cambios en el mundo y en nuestra visión del mundo.

• Puede usarse en gran cantidad de situaciones aún cuando no sea totalmente preciso o completo.

• Puede usarse para ayudar a superar su propio volumen, ayudando a acotar el rango de posibilidades que normalmente deben ser consideradas.

Es posible resolver problemas de IA sin utilizar Técnicas de IA (si bien estas soluciones no suelen ser muy adecuadas). También es posible aplicar técnicas de IA para resolver problemas ajenos a la IA. Esto parece ser adecuado para aquellos problemas que tengan muchas de las características de los problemas de IA.

Los problemas al irse resolviendo tienen entre las características de su solución:

• Complejidad

• El uso de generalizaciones

• La claridad de su conocimiento

• La facilidad de su extensión

Investigación y desarrollo en áreas de la IA:

Las aplicaciones tecnológicas en las que los métodos de IA usados han demostrado con éxito que pueden resolver complicados problemas de forma masiva, se han desarrollado en sistemas que:

1. Permiten al usuario preguntar a una base de datos en cualquier lenguaje que sea, mejor que un lenguaje de programación.

2.

2. Reconocen objetos de una escena por medio de aparatos de visión.

3. Generar palabras reconocibles como humanas desde textos computarizados.

4. Reconocen e interpretan un pequeño vocabulario de palabras humanas.

5. Resuelven problemas en una variedad de campos usando conocimientos expertos codificados.

Los países que han apadrinado investigaciones de IA han sido: EEUU. , Japón, Reino Unido y la CEE; y lo han llevado a cabo a través de grandes compañías y cooperativas de riesgo y ventura, así como con universidades, para resolver problemas ahorrando dinero. Las aplicaciones más primarias de la IA se clasifican en cuatro campos: sistemas expertos, lenguaje natural, robótica y visión, sistemas censores y programación automática.


INTELIGENCIA ARTIFICIAL

4. INTELIGENCIA ARTIFICIAL:


Historia:

Es en los años 50 cuando se logra realizar un sistema que tuvo cierto éxito, se llamó el Perceptrón de Rossenblatt. Éste era un sistema visual de reconocimiento de patrones en el cual se aunaron esfuerzos para que se pudieran resolver una gama amplia de problemas, pero estas energías se diluyeron enseguida.

Fué en los años 60 cuando Alan Newell y Herbert Simon, que trabajando la demostración de teoremas y el ajedrez por ordenador logran crear un programa llamado GPS (General Problem Solver: solucionador general de problemas). Éste era una sistema en el que el usuario definía un entorno en función de una serie de objetos y los operadores que se podían aplicar sobre ellos. Este programa era capaz de trabajar con las torres de Hanoi, así como con criptoaritmética y otros problemas similares, operando, claro está, con microcosmos formalizados que representaban los parámetros dentro de los cuales se podían resolver problemas. Lo que no podía hacer el GPS era resolver problemas ni del mundo real, ni médicos ni tomar decisiones importantes. El GPS manejaba reglas heurísticas (aprender a partir de sus propios descubrimientos) que la conducían hasta el destino deseado mediante el método del ensayo y el error.

En los años 70, un equipo de investigadores dirigido por Edward Feigenbaum comenzó a elaborar un proyecto para resolver problemas de la vida cotidiana o que se centrara, al menos, en problemas más concretos. Así es como nació el sistema experto.

El primer sistema experto fue el denominado Dendral, un intérprete de espectrograma de masa construido en 1967, pero el más influyente resultaría ser el Mycin de 1974. El Mycin era capaz de diagnosticar trastornos en la sangre y recetar la correspondiente medicación, todo un logro en aquella época que incluso fueron utilizados en hospitales (como el Puff, variante de Mycin de uso común en el Pacific Medical Center de San Francisco, EEUU).

Ya en los años 80, se desarrollaron lenguajes especiales para utilizar con la Inteligencia Artificial, tales como el LISP o el PROLOG. Es en esta época cuando se desarrollan sistemas expertos más refinados, como por el ejemplo el EURISKO. Este programa perfecciona su propio cuerpo de reglas heurísticas automáticamente, por inducción.

Definición de Inteligencia Artificial

La inteligencia artificial estudia como lograr que las máquinas realicen tareas que, por el momento, son realizadas mejor por los seres humanos. La definición es efímera porque hace referencia al estado actual de la informática. No incluye áreas que potencialmente tienen un gran impacto tales como aquellos problemas que no pueden ser resueltos adecuadamente ni por los seres humanos ni por las máquinas.

Al principio se hizo hincapié en las tareas formales como juegos y demostración de teoremas, juegos como las damas y el ajedrez demostraron interés. La geometría fue otro punto de interés y se hizo un demostrador llamado: El demostrador de Galenter. Sin embargo la IA pronto se centró en problemas que aparecen a diario denominados de sentido común (commonsense reasoning).

Se enfocaron los estudios hacia un problema muy importante denominado Comprensión del lenguaje natural. No obstante el éxito que ha tenido la IA se basa en la creación de los sistemas expertos, y de hecho áreas en donde se debe tener alto conocimiento de alguna disciplina se han dominado no así las de sentido común.

Aplicaciones de la IA:

Tareas de la vida diaria:

• Percepción

• Visión

• Habla

• Lenguaje natural

• Comprensión

• Generación

• Traducción

• Sentido común

• Control de un robot


HISTORIA DE LA ROBOTICA:

3. HISTORIA DE LA ROBOTICA:


La historia de la robótica ha estado unida a la construcción de "artefactos", que trataban de materializar el deseo humano de crear seres a su semejanza y que lo descargasen del trabajo. El ingeniero español Leonardo Torres Quevedo (GAP) (que construyó el primer mando a distancia para su automóvil mediante telegrafía sin hilo, el ajedrecista automático, el primer transbordador aéreo y otros muchos ingenios) acuñó el término "automática" en relación con la teoría de la automatización de tareas tradicionalmente asociadas a los humanos.

Karel Čapek, un escritor checo, acuñó en 1921 el término "Robot" en su obra dramática "Rossum's Universal Robots / R.U.R.", a partir de la palabra checa robota, que significa servidumbre o trabajo forzado. El término robótica es acuñado por Isaac Asimov, definiendo a la ciencia que estudia a los robots. Asimov creó también las Tres Leyes de la Robótica. En la ciencia ficción el hombre ha imaginado a los robots visitando nuevos mundos, haciéndose con el poder, o simplemente aliviando de las labores caseras.

Fecha Importancia Nombre del robot Inventor

Siglo I a. C. y antes Descripciones de más de 100 máquinas y autómatas, incluyendo un artefacto con fuego, un órgano de viento, una máquina operada mediante una moneda, una máquina de vapor, en Pneumatica y Automata de Herón de Alexandria

Autonoma Ctesibius de Alexandria, Filón de Bizancio, Herón de Alexandria, y otros

1206

Primer robot humanoide programable

Barco con cuatro músicos robotizados Al-Jazari


c. 1495 Diseño de un robot humanoide Caballero mecánico Leonardo da Vinci


1738

Pato mecánico capaz de comer, agitar sus alas y excretar. Digesting Duck

Jacques de Vaucanson


1800s

Juguetes mecánicos japoneses que sirven té, disparan flechas y pintan. Juguetes Karakuri Hisashige Tanaka


1921

Aparece el primer autómata de ficción llamado "robot", aparece en R.U.R. Rossum's Universal Robots Karel Čapek


1930s

Se exhibe un robot humanoide en la World's Fairs entre los años 1939 y 1940

Elektro

Westinghouse Electric Corporation


1948

Exhibición de un robot con comportamiento biológico simple[5]

Elsie y Elmer William Grey Walter


1956

Primer robot comercial, de la compañía Unimation fundada por George Devol y Joseph Engelberger, basada en una patente de Devol[6]

Unimate

George Devol


1961

Se instala el primer robot industrial Unimate

George Devol


1963

Primer robot "palletizing"[7]

Palletizer Fuji Yusoki Kogyo


1973

Primer robot con seis ejes electromecánicos Famulus KUKA Robot Group


1975

Brazo manipulador programable universal, un producto de Unimation PUMA

Victor Scheinman


2000

Robot Humanoide capaz de desplazarse de forma bípeda e interactuar con las personas ASIMO

Honda Motor Co. Ltd


CONFIGURACION POLAR

La configuración polar utiliza coordenadas polares para especificar cualquier posición en términos de una rotación sobre su base, un ángulo de elevación y una extensión lineal del brazo.


La configuración cilíndrica sustituye un movimiento lineal por uno rotacional sobre su base, con los que se obtiene un medio de trabajo en forma de cilindro.

La configuración de coordenadas cartesianas posee tres movimientos lineales, y su nombre proviene de las coordenadas cartesianas, las cuales son más adecuadas para describir la posición y movimiento del brazo. Los robots cartesianos a veces reciben el nombre de XYZ, donde las letras representan a los tres ejes del movimiento.

La configuración de brazo articulado utiliza únicamente articulaciones rotacionales para conseguir cualquier posición y es por esto que es el más versátil.

Futuro de la robótica

A pesar de que existen muchos robots que efectúan trabajos industriales, aquellos son incapaces de desarrollar la mayoría de

operaciones que la industria requiere. Al no disponer de unas capacidades sensoriales bien desarrolladas, el robot es incapaz de realizar tareas que dependen del resultado de otra anterior.

En un futuro próximo, la robótica puede experimentar un avance espectacular con las cámaras de televisión, más pequeñas y menos caras, y con las computadoras potentes y más asequibles.

Los sensores se diseñarán de modo que puedan medir el espacio tridimensional que rodea al robot, así como reconocer y medir la posición y la orientación de los objetos y sus relaciones con el espacio. Se dispondrá de un sistema de proceso sensorial capaz de analizar e interpretar los datos generados por los sensores, así como de compararlos con un modelo para detectar los errores que se puedan producir. Finalmente, habrá un sistema de control que podrá aceptar comandos de alto nivel y convertirlos en órdenes, que serán ejecutadas por el robot para realizar tareas enormemente sofisticadas.

Si los elementos del robot son cada vez más potentes, también tendrán que serlo los programas que los controlen a través de la computadora. Si los programas son más complejos, la computadora deberá ser más potente y cumplir nos requisitos mínimos para dar una respuesta rápida a la información que le llegue a través de los sensores del robot.

Paralelo al avance de los robots industriales era el avance de las investigaciones de los robots llamados androides, que también se beneficiarán de los nuevos logros en el campo de los aparatos sensoriales. De todas formas, es posible que pasen decenas de años antes de que se vea un androide con mínima apariencia humana en cuanto a movimientos y comportamiento.

Aún se pueden añadir a este tipo de robots capacidades sensoriales: sensores ópticos, codificadores, etc. Los que no poseen estas capacidades sólo pueden trabajar en ambientes donde los objetos que se manipulan se mantienen siempre en la misma posición. Los robots con capacidades sensoriales constituyen la última generación de este tipo de máquinas. El uso de estos robots en los ambientes industriales es muy escaso debido a su elevado costo. Estos robots se usan en cadenas de embotellado para comprobar si las botellas están llenas o si la etiqueta está bien colocada.


• Robots mosquitos: La cucaracha metálica se arrastra con gran destreza por la arena, como un verdadero insecto. A pesar de que Atila avanza a 2 km/h, tratando de no tropezar con las cosas, es «gramo por gramo el robot más complejo del mundo», según su creador, Rodney Brooks. En su estructura de 1,6 kg y 6 patas, lleva 24 motores, 10 computadores y 150 sensores, incluida una cámara de video en miniatura. La experimentación en operaciones quirúrgicas con robots abre nuevos campos tan positivos como esperanzadores. La cirugía requiere de los médicos una habilidad, precisión y decisión muy cualificadas. La asistencia de ingenios puede complementar algunas de las condiciones que el trabajo exige. En operaciones delicadísimas, como las de cerebro, el robot puede aportar mayor fiabilidad. Últimamente, se ha logrado utilizar estas máquinas para realizar el cálculo de los ángulos de incisión de los instrumentos de corte y reconocimiento en operaciones cerebrales; así mismo, su operatividad se extiende a la dirección y el manejo del trepanador quirúrgico para penetrar el cráneo y de la aguja de biopsia para tomar muestras del cerebro.

• Robot industrial: Nace de la unión de una estructura mecánica articulada y de un sistema electrónico de control en el que se integra una computadora. Esto permite la programación y control de los movimientos a efectuar por el robot y la memorización de las diversas secuencias de trabajo, por lo que le da al robot una gran flexibilidad y posibilita su adaptación a muy diversas tareas y medios de trabajo,

El robot industrial es pues un dispositivo multifuncional, es decir, apto para muy diversas aplicaciones, al contrario de la máquina automática clásica, fabricada para realizar de forma repetitiva un tipo determinado de operaciones. El robot industrial se diseña en función de diversos movimientos que debe poder ejecutar; es decir, lo que importa son sus grados de libertad, su campo de trabajo, su comportamiento estático y dinámico.


La capacidad del robot industrial para reconfigurar su ciclo de trabajo, unida a la versatilidad y variedad de sus elementos terminales (pinzas, garras, herramientas, etc.), le permite adaptarse fácilmente a la evolución o cambio de los procesos de producción, facilitando su reconversión.

Los robots industriales están disponibles en una amplia gama de tamaños, formas y configuraciones físicas. La gran mayoría de los robots comercialmente disponibles en la actualidad tienen una de estas cuatro configuraciones básicas:

• Configuración polar

• Configuración cilíndrica

• Configuración de coordenadas cartesianas

• Configuración de brazo articulado

Tipos de robots

• Robots impulsados neumaticamente: La programación consiste en la conexión de tubos de plástico a unos manguitos de unión de la unidad de control neumático. Esta unidad está formada por dos partes: una superior y una inferior. La parte inferior es un secuenciador que proporciona presión y vacío al conjunto de manguitos de unión en una secuencia controlada por el tiempo. La parte superior es el conjunto de manguitos de unión que activan cada una de las piezas móviles del robot. Son los más simples que existen. Hay quien opina que a este tipo de máquinas no se les debería llamar robots; sin embargo, en ellas se encuentran todos los elementos básicos de un robot: estas máquinas son programables, automáticas y pueden realizar gran variedad de movimientos.


• Robots equipados con servomecanismos: El uso de servomecanismos va ligado al uso de sensores, como los potenciómetros, que informan de la posición del brazo o la pieza que se ha movido del robot, una vez éste ha ejecutado una orden transmitida. Esta posición es comparada con la que realmente debería adoptar el brazo o la pieza después de la ejecución de la orden; si no es la misma, se efectúa un movimiento más hasta llegar a la posición indicada.

• Robots punto a punto: La programación se efectúa mediante una caja de control que posee un botón de control de velocidad, mediante el cual se puede ordenar al robot la ejecución de los movimientos paso a paso. Se clasifican, por orden de ejecución, los pasos que el robot debe seguir, al mismo tiempo que se puede ir grabando en la memoria la posición de cada paso. Este será el programa que el robot ejecutará. Una vez terminada la programación, el robot inicia su trabajo según las instrucciones del programa. A este tipo de robots se les llama punto a punto, porque el camino trazado para la realización de su trabajo está definido por pocos puntos.

• Robots controlados por computadora: Se pueden controlar mediante computadora. Con ella es posible programar el robot para que mueva sus brazos en línea recta o describiendo cualquier otra figura geométrica entre puntos preestablecidos. La programación se realiza mediante una caja de control o mediante el teclado de la computadora. La computadora permite además acelerar más o menos los movimientos del robot, para facilitar la manipulación de objetos pesados.

• Robots con capacidades sensoriales:

Robots:

Robots:


Los robots son dispositivos compuestos de sensores que reciben datos de entrada y que pueden estar conectados a la computadora. Esta, al recibir la información de entrada, ordena al robot que efectúe una determinada acción. Puede ser que los propios robots dispongan de microprocesadores que reciben el input de los sensores y que estos microprocesadores ordenen al robot la ejecución de las acciones para las cuales está concebido. En este último caso, el propio robot es a su vez una computadora.

Otras definiciones para robot son:

• Máquina controlada por ordenador y programada para moverse, manipular objetos y realizar trabajos a la vez que interacciona con su entorno. Los robots son capaces de realizar tareas repetitivas de forma más rápida, barata y precisa que los seres humanos. El término procede de la palabra checa robota, que significa "trabajo obligatorio", fue empleado por primera vez en la obra teatral de 1921 R.U.R (Robots Universales de Rossum) por el novelista y dramaturgo checo Karel Capek. Desde entonces se ha empleado la palabra robot para referirse a una máquina que realiza trabajos para ayudar a las personas o efectúa tareas difíciles o desagradables para los humanos.

• Un robot es una manipulador multifuncional reprogramable diseñado para mover material, piezas, herramientas o dispositivos especializados a través de movimientos programados variables para la realización de tareas variadas. Para realizar cualquier tarea útil el robot debe interactuar con el entorno, el cual puede incluir dispositivos de alimentación, otros robots y, lo más importante, gente. Consideramos que la robótica abarca no solamente el estudio del robot en sí, sino también las interfaces entre él y sus alrededores.

• Ingenio electrónico que puede ejecutar automáticamente operaciones o movimientos muy variados, y capaz de llevar a cabo todos los trabajos normalmente ejecutados por el nombre.

• Manipulador multifuncional y reprogramable, diseñado para mover materiales, piezas, herramientas o dispositivos especiales, mediante movimientos programados y variables que permiten llevar a cabo diversas tareas.

El nombre de robots es tomado del vocablo checo "robota" que significa siervo y que es idéntico al término ruso que significa trabajo arduo, repetitivo y monótono, y lo usó por primera vez el escritor Karel Capek en 1917 para referirse en su obras a máquinas con forma humanoide. Deriva de "robotnik" que define al esclavo de trabajo

En la actualidad, los avances tecnológicos y científicos no han permitido todavía construir un robot realmente inteligente, aunque existen esperanzas de que esto sea posible algún día. Hoy por hoy, una de las finalidades de la construcción de robots es su intervención en los procesos de fabricación. Estos robots, que no tienen forma humana en absoluto, son los encargados de realizar trabajos repetitivos en las cadenas de proceso de fabricación. En una fábrica sin robots, los trabajos antes mencionados los realizan técnicos especialistas en cadenas de producción. Con los robots, el técnico puede librarse de la rutina y el riesgo que sus labores comportan, con lo que la empresa gana en rapidez, calidad y precisión.